Ultrafast CMOS inverter with 4.7 ps gate delay fabricated on 90 nm SOI technology - Electronics Letters

نویسندگان

  • L. C. Rodoni
  • F. Ellinger
  • H. Jäckel
چکیده

Introduction: The increase of transistor speed in CMOS technologies has been reached mainly by scaling the gate length of the MOS transistors. For the most advanced technologies, gate lengths down to 40 nm with an ft of 243 GHz [1] have been reported. This allows performances comparable to expensive III-V technologies based on GaAs or InP and in addition the potential for very large scale integration (VLSI) designs. The speed performance of a technology for digital applications is characterised by minimal gate delay at a specified fan-out. Ring oscillators or delay chains are frequently used for the determination of the minimal gate delay of a technology.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Channel thickness dependency of high-k gate dielectric based double-gate CMOS inverter

This work investigates the channel thickness dependency of high-k gate dielectric-based complementary metal-oxide-semiconductor (CMOS) inverter circuit built using a conventional double-gate metal gate oxide semiconductor field-effect transistor (DG-MOSFET). It is espied that the use of high-k dielectric as a gate oxide in n/p DG-MOSFET based CMOS inverter results in a high noise margin as well...

متن کامل

Simulation of Asymmetric Doped High Performance Soi- Mosfets for Vlsi Cmos Technologies

Asymmetric halo and extension implantations are examined by simulation for their usability in 45 nm and 32 nm-technology high performance SOI-MOSFETs. Tilted implantations from the source side show higher saturation currents and lower drain overlap capacitances, which improve the intrinsic MOSFET power delay product. Furthermore the asymmetry leads to an inverter chain speed benefit. The strong...

متن کامل

A Low-Power Multi-Phase Oscillator with Transfer Gate Phase Coupler Enabling Even-Numbered Phase Output

We propose a transfer gate phase coupler for a low-power multi-phase oscillator (MPOSC). The phase coupler is an nMOS transfer gate, which does not waste charge to the ground and thus achieves low power. The proposed MPOSC can set the number of outputs to an arbitrary number. The test circuit in a 180-nm process and a 65-nm process exhibits 20 phases, including 90◦ different angles. The designs...

متن کامل

Design and Analysis of New Level Shifter With Gate Driver for Li-Ion Battery Charger in 180nm CMOS Technology

In this work, the design and analysis of new Level Shifter with Gate Driver for Li-Ion battery charger is proposed for high speed and low area in 180nm CMOS technology. The new proposed level shifter is used to raise the voltage level and significantly reduces transfer delay 1.3ns (transfer delay of conventional level shifter) to 0.15ns with the same input signal. Also, the level shifter with g...

متن کامل

Low Power Double Edge Pulse Triggered Flip Flop Design

In this paper a novel low power double edge pulse triggered flip flop (FF) design is present. First, the pulse generation control logic by using the NAND function and is removed from the critical path to facilitate a faster discharge operation. A simple two transistor NAND gate design is used to reduce the circuit complexity. Second, a double edge conditional discharging flip flop is used to re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001